University of Toronto St. George Campus - Psychology
C. Peter Herman Professor Emeritus of Psychology
Professor
Full Professor Position - Teaching and Research
Postdoctoral Fellow
Research: X-Ray Lasers
BaEng
Engineering Physics
PhD
Laser Physics
MSc
Physics
Professor
Full Professor Position - Teaching and Research
Optics Expres
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA μJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
Optics Expres
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA μJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
Optics Express
Optics Expres
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA μJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
Optics Express
Optics Express
We report on waveguide writing in fused silica with a novel commercial femtosecond fiber laser system (IMRA America, FCPA µJewel). The influence of a range of laser parameters were investigated in these initial experiments, including repetition rate, focal area, pulse energy, scan speed, and wavelength. Notably, it was not possible to produce low-loss waveguides when writing with the fundamental wavelength of 1045 nm. However, it was possible to fabricate telecom-compatible waveguides at the second harmonic wavelength of 522 nm. High quality waveguides with propagation losses below 1 dB/cm at 1550 nm were produced with 115 nJ/pulse at 1 MHz and 522 nm.
Optics Expres
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA μJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
Optics Express
Optics Express
We report on waveguide writing in fused silica with a novel commercial femtosecond fiber laser system (IMRA America, FCPA µJewel). The influence of a range of laser parameters were investigated in these initial experiments, including repetition rate, focal area, pulse energy, scan speed, and wavelength. Notably, it was not possible to produce low-loss waveguides when writing with the fundamental wavelength of 1045 nm. However, it was possible to fabricate telecom-compatible waveguides at the second harmonic wavelength of 522 nm. High quality waveguides with propagation losses below 1 dB/cm at 1550 nm were produced with 115 nJ/pulse at 1 MHz and 522 nm.
LIght: Science & Applications
The confinement of laser interactions inside transparent materials assisted by tight optical focusing and short-pulsed nonlinear interactions has driven many high-resolution patterning and probing applications in science and technology. In thin transparent films, laser interactions confined to the film/substrate interface have underpinned blistering and ejection processes for nanofluidic channel fabrication, film patterning and cell catapulting. Here, we harness femtosecond lasers to drive nonlinear interactions within Fabry–Perot interference fringes to define narrow nanolength scale zones for highly resolved internal structuring of a film of refractive index, nfilm, at fringe maxima separated by λ/2nfilm. This novel interaction internally cleaves the film to open subwavelength internal cavities and form thin membranes at single or multiple depths from which follow significant opportunities for writing multilevel nanofluidic channels inside the film, as well as ejecting nanodisks at quantized film depths for coloring and three-dimensional surface patterning that promise new compact types of lab-in-film devices.
Optics Expres
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA μJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
Optics Express
Optics Express
We report on waveguide writing in fused silica with a novel commercial femtosecond fiber laser system (IMRA America, FCPA µJewel). The influence of a range of laser parameters were investigated in these initial experiments, including repetition rate, focal area, pulse energy, scan speed, and wavelength. Notably, it was not possible to produce low-loss waveguides when writing with the fundamental wavelength of 1045 nm. However, it was possible to fabricate telecom-compatible waveguides at the second harmonic wavelength of 522 nm. High quality waveguides with propagation losses below 1 dB/cm at 1550 nm were produced with 115 nJ/pulse at 1 MHz and 522 nm.
LIght: Science & Applications
The confinement of laser interactions inside transparent materials assisted by tight optical focusing and short-pulsed nonlinear interactions has driven many high-resolution patterning and probing applications in science and technology. In thin transparent films, laser interactions confined to the film/substrate interface have underpinned blistering and ejection processes for nanofluidic channel fabrication, film patterning and cell catapulting. Here, we harness femtosecond lasers to drive nonlinear interactions within Fabry–Perot interference fringes to define narrow nanolength scale zones for highly resolved internal structuring of a film of refractive index, nfilm, at fringe maxima separated by λ/2nfilm. This novel interaction internally cleaves the film to open subwavelength internal cavities and form thin membranes at single or multiple depths from which follow significant opportunities for writing multilevel nanofluidic channels inside the film, as well as ejecting nanodisks at quantized film depths for coloring and three-dimensional surface patterning that promise new compact types of lab-in-film devices.
Advanced materials
Optics Expres
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA μJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
Optics Express
Optics Express
We report on waveguide writing in fused silica with a novel commercial femtosecond fiber laser system (IMRA America, FCPA µJewel). The influence of a range of laser parameters were investigated in these initial experiments, including repetition rate, focal area, pulse energy, scan speed, and wavelength. Notably, it was not possible to produce low-loss waveguides when writing with the fundamental wavelength of 1045 nm. However, it was possible to fabricate telecom-compatible waveguides at the second harmonic wavelength of 522 nm. High quality waveguides with propagation losses below 1 dB/cm at 1550 nm were produced with 115 nJ/pulse at 1 MHz and 522 nm.
LIght: Science & Applications
The confinement of laser interactions inside transparent materials assisted by tight optical focusing and short-pulsed nonlinear interactions has driven many high-resolution patterning and probing applications in science and technology. In thin transparent films, laser interactions confined to the film/substrate interface have underpinned blistering and ejection processes for nanofluidic channel fabrication, film patterning and cell catapulting. Here, we harness femtosecond lasers to drive nonlinear interactions within Fabry–Perot interference fringes to define narrow nanolength scale zones for highly resolved internal structuring of a film of refractive index, nfilm, at fringe maxima separated by λ/2nfilm. This novel interaction internally cleaves the film to open subwavelength internal cavities and form thin membranes at single or multiple depths from which follow significant opportunities for writing multilevel nanofluidic channels inside the film, as well as ejecting nanodisks at quantized film depths for coloring and three-dimensional surface patterning that promise new compact types of lab-in-film devices.
Advanced materials
38th IEEE Photovoltaic Specialists Conference
Optics Expres
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA μJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
Optics Express
Optics Express
We report on waveguide writing in fused silica with a novel commercial femtosecond fiber laser system (IMRA America, FCPA µJewel). The influence of a range of laser parameters were investigated in these initial experiments, including repetition rate, focal area, pulse energy, scan speed, and wavelength. Notably, it was not possible to produce low-loss waveguides when writing with the fundamental wavelength of 1045 nm. However, it was possible to fabricate telecom-compatible waveguides at the second harmonic wavelength of 522 nm. High quality waveguides with propagation losses below 1 dB/cm at 1550 nm were produced with 115 nJ/pulse at 1 MHz and 522 nm.
LIght: Science & Applications
The confinement of laser interactions inside transparent materials assisted by tight optical focusing and short-pulsed nonlinear interactions has driven many high-resolution patterning and probing applications in science and technology. In thin transparent films, laser interactions confined to the film/substrate interface have underpinned blistering and ejection processes for nanofluidic channel fabrication, film patterning and cell catapulting. Here, we harness femtosecond lasers to drive nonlinear interactions within Fabry–Perot interference fringes to define narrow nanolength scale zones for highly resolved internal structuring of a film of refractive index, nfilm, at fringe maxima separated by λ/2nfilm. This novel interaction internally cleaves the film to open subwavelength internal cavities and form thin membranes at single or multiple depths from which follow significant opportunities for writing multilevel nanofluidic channels inside the film, as well as ejecting nanodisks at quantized film depths for coloring and three-dimensional surface patterning that promise new compact types of lab-in-film devices.
Advanced materials
38th IEEE Photovoltaic Specialists Conference
Applied Physics Letters
Applied Physics Letters