Joshua Fields

 JoshuaA. Fields

Joshua A. Fields

  • Courses6
  • Reviews12

Biography

Georgia Military College Augusta - Biology



Experience

  • Georgia Military College

    Assistant Professor

    Joshua worked at Georgia Military College as a Assistant Professor

  • Georgia Military College

    Assistant Chief Academic Officer

    Joshua worked at Georgia Military College as a Assistant Chief Academic Officer

Education

  • Medical College of Georgia

    PhD

    Biochemistry, Microbiology

  • Georgia Regents University

    Fellowship

    Cell Biology

  • Georgia Regents University

    Post Doctoral Fellow



  • Columbus State University

    Bachelor of Science

    Biology

Publications

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion

    Journal of Bacteriology

    The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni pathogenesis.

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion

    Journal of Bacteriology

    The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni pathogenesis.

  • Regulation of Virulence in the human pathogen Campylobacter jejuni by the RNA binding protein CsrA

    Georgia Health Sciences University

    Dissertation completed in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion

    Journal of Bacteriology

    The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni pathogenesis.

  • Regulation of Virulence in the human pathogen Campylobacter jejuni by the RNA binding protein CsrA

    Georgia Health Sciences University

    Dissertation completed in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

  • Campylobacter jejuni CsrA complements an Escherichia coli csrA mutatn for the regulation of biofilm formation, motility, and cellular morphology but not glycogen accumulation

    Submitted to Microbiology

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion

    Journal of Bacteriology

    The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni pathogenesis.

  • Regulation of Virulence in the human pathogen Campylobacter jejuni by the RNA binding protein CsrA

    Georgia Health Sciences University

    Dissertation completed in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

  • Campylobacter jejuni CsrA complements an Escherichia coli csrA mutatn for the regulation of biofilm formation, motility, and cellular morphology but not glycogen accumulation

    Submitted to Microbiology

  • A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chick colonization.

    Molecular Microbiology

    Campylobacter jejuni is a gastrointestinal pathogen of humans but can asymptomatically colonize the avian gut. C. jejuni therefore grows at both 37°C and 42°C, the internal temperatures of humans and birds respectively. Microarray and proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 42°C of two proteins, Cj0414 and Cj0415, orthologous to gluconate dehydrogenase (GADH) from Pectobacterium cypripedii. 81–176 demonstrated GADH activity, converting d-gluconate to 2-keto-d-gluconate, that was higher at 42°C than at 37°C. In contrast, cj0414 and cj0415 mutants lacked GADH activity. Wild-type but not cj0415 mutant bacteria exhibited gluconate-dependent respiration. Neither strain grew in defined media with d-gluconate or 2-keto-d-gluconate as a sole carbon source, revealing that gluconate was used as an electron donor rather than as a carbon source. When administered to chicks individually or in competition with wild-type, the cj0415 mutant was impaired in establishing colonization. In contrast, there were few significant differences in colonization of BALB/c-ByJ mice in single or mixed infections. These results suggest that the ability of C. jejuni to use gluconate as an electron donor via GADH activity is an important metabolic characteristic that is required for full colonization of avian but not mammalian hosts.

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion

    Journal of Bacteriology

    The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni pathogenesis.

  • Regulation of Virulence in the human pathogen Campylobacter jejuni by the RNA binding protein CsrA

    Georgia Health Sciences University

    Dissertation completed in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

  • Campylobacter jejuni CsrA complements an Escherichia coli csrA mutatn for the regulation of biofilm formation, motility, and cellular morphology but not glycogen accumulation

    Submitted to Microbiology

  • A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chick colonization.

    Molecular Microbiology

    Campylobacter jejuni is a gastrointestinal pathogen of humans but can asymptomatically colonize the avian gut. C. jejuni therefore grows at both 37°C and 42°C, the internal temperatures of humans and birds respectively. Microarray and proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 42°C of two proteins, Cj0414 and Cj0415, orthologous to gluconate dehydrogenase (GADH) from Pectobacterium cypripedii. 81–176 demonstrated GADH activity, converting d-gluconate to 2-keto-d-gluconate, that was higher at 42°C than at 37°C. In contrast, cj0414 and cj0415 mutants lacked GADH activity. Wild-type but not cj0415 mutant bacteria exhibited gluconate-dependent respiration. Neither strain grew in defined media with d-gluconate or 2-keto-d-gluconate as a sole carbon source, revealing that gluconate was used as an electron donor rather than as a carbon source. When administered to chicks individually or in competition with wild-type, the cj0415 mutant was impaired in establishing colonization. In contrast, there were few significant differences in colonization of BALB/c-ByJ mice in single or mixed infections. These results suggest that the ability of C. jejuni to use gluconate as an electron donor via GADH activity is an important metabolic characteristic that is required for full colonization of avian but not mammalian hosts.

  • Campylobacter jejuni CsrA regulates metabolic and virulence associated proteins and is necessary for mouse colonization

    In preparation

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion

    Journal of Bacteriology

    The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni pathogenesis.

  • Regulation of Virulence in the human pathogen Campylobacter jejuni by the RNA binding protein CsrA

    Georgia Health Sciences University

    Dissertation completed in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

  • Campylobacter jejuni CsrA complements an Escherichia coli csrA mutatn for the regulation of biofilm formation, motility, and cellular morphology but not glycogen accumulation

    Submitted to Microbiology

  • A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chick colonization.

    Molecular Microbiology

    Campylobacter jejuni is a gastrointestinal pathogen of humans but can asymptomatically colonize the avian gut. C. jejuni therefore grows at both 37°C and 42°C, the internal temperatures of humans and birds respectively. Microarray and proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 42°C of two proteins, Cj0414 and Cj0415, orthologous to gluconate dehydrogenase (GADH) from Pectobacterium cypripedii. 81–176 demonstrated GADH activity, converting d-gluconate to 2-keto-d-gluconate, that was higher at 42°C than at 37°C. In contrast, cj0414 and cj0415 mutants lacked GADH activity. Wild-type but not cj0415 mutant bacteria exhibited gluconate-dependent respiration. Neither strain grew in defined media with d-gluconate or 2-keto-d-gluconate as a sole carbon source, revealing that gluconate was used as an electron donor rather than as a carbon source. When administered to chicks individually or in competition with wild-type, the cj0415 mutant was impaired in establishing colonization. In contrast, there were few significant differences in colonization of BALB/c-ByJ mice in single or mixed infections. These results suggest that the ability of C. jejuni to use gluconate as an electron donor via GADH activity is an important metabolic characteristic that is required for full colonization of avian but not mammalian hosts.

  • Campylobacter jejuni CsrA regulates metabolic and virulence associated proteins and is necessary for mouse colonization

    In preparation

  • Evaluation of procedures for outer membrane isolation from Campylobacter jejuni

    Microbiology, The Society for General Microbiology

    Although infection with Campylobacter jejuni is one of the leading causes of gastroenteritis worldwide, relatively little is known about the factors that are required to elicit a protective immune response. The need for a vaccine against this pathogen is well recognized and a number of vaccine candidates have been tested with varying degrees of success; however, there is still a lack of a suitable vaccine. To gain a better understanding of the outer-membrane protein components of this organism, a ‘gold standard’ method to purify the outer membrane is needed. Therefore, we attempted to develop a robust and reliable method which resulted in a pure outer-membrane fraction. A total of nine methodologies were examined and analysed by SDS-PAGE and immunoblotting using subcellular markers for the cytoplasm, cytoplasmic membrane and outer membrane. We found that glycine extraction, differential detergent extraction using Triton X-100, serial extraction using 1 M Tris pH 7, spheroplasting by lysozyme and sonication, and carbonate extraction did not produce pure outer-membrane preparations. However, we identified three methods that provided outer-membrane fractions free from subcellular contamination. Isopycnic centrifugation using a 30–60 % sucrose gradient produced seven fractions free from cytoplasmic or cytoplasmic membrane contamination; however, these fractions did not correspond as well as expected with the typical outer-membrane-associated peak (e.g. Escherichia coli or Salmonella). The spheroplast method using lysozyme alone also resulted in pure outer-membrane fraction, as did carbonate washing of this sample. The extraction of outer membranes using N-lauroylsarcosine (Sarkosyl) produced the purest and most reproducible sample. These outer-membrane preparations will be useful for future studies aimed at identifying C. jejuni surface proteins as vaccine components.

  • Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis

    Journal of Bacteriology

    Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white. We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed galT and cstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (waaF and lgtF but not galT or cstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.

  • Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion

    Journal of Bacteriology

    The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni pathogenesis.

  • Regulation of Virulence in the human pathogen Campylobacter jejuni by the RNA binding protein CsrA

    Georgia Health Sciences University

    Dissertation completed in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

  • Campylobacter jejuni CsrA complements an Escherichia coli csrA mutatn for the regulation of biofilm formation, motility, and cellular morphology but not glycogen accumulation

    Submitted to Microbiology

  • A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chick colonization.

    Molecular Microbiology

    Campylobacter jejuni is a gastrointestinal pathogen of humans but can asymptomatically colonize the avian gut. C. jejuni therefore grows at both 37°C and 42°C, the internal temperatures of humans and birds respectively. Microarray and proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 42°C of two proteins, Cj0414 and Cj0415, orthologous to gluconate dehydrogenase (GADH) from Pectobacterium cypripedii. 81–176 demonstrated GADH activity, converting d-gluconate to 2-keto-d-gluconate, that was higher at 42°C than at 37°C. In contrast, cj0414 and cj0415 mutants lacked GADH activity. Wild-type but not cj0415 mutant bacteria exhibited gluconate-dependent respiration. Neither strain grew in defined media with d-gluconate or 2-keto-d-gluconate as a sole carbon source, revealing that gluconate was used as an electron donor rather than as a carbon source. When administered to chicks individually or in competition with wild-type, the cj0415 mutant was impaired in establishing colonization. In contrast, there were few significant differences in colonization of BALB/c-ByJ mice in single or mixed infections. These results suggest that the ability of C. jejuni to use gluconate as an electron donor via GADH activity is an important metabolic characteristic that is required for full colonization of avian but not mammalian hosts.

  • Campylobacter jejuni CsrA regulates metabolic and virulence associated proteins and is necessary for mouse colonization

    In preparation

Possible Matching Profiles

The following profiles may or may not be the same professor:

  • Joshua A Fields (30% Match)
    Post-Doctoral Associate
    Georgia Health Sciences University - Georgia Health Sciences University

  • Joshua A Fields (70% Match)
    Assistant Professor
    Georgia Military College - Georgia Military College

BIO 211

4.5(3)

BIOBIO 2112

5(1)

BIO 299

4.7(5)

BIOLOGYMI 1

5(1)